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Linear time-varying (LTV) systems have been often dealt with on a case-by-case
basis. Many well-developed concepts and analytic methods of linear time-invariant
(LTI) systems cannot be applied to LTV systems. For example, the conventional
de"nition of modal parameters is invalid for LTV systems. The "rst part of this
paper explores the possibility of extending the modal concept of LTV systems. The
discrete-time state-space model is used to represent LTV systems. By analogy to
LTI systems, the pseudo-modal parameters are de"ned using the eigenvalues of the
discrete-time state transition matrix. The paper shows that the pseudo-modal
parameters preserve certain properties of the conventional modal parameters
de"ned for LTI systems. The second part of the paper extends a previously
developed algorithm to identify the pseudo-modal parameters using forced
responses and forcing inputs. For a general LTV system, the input and output
Hankel matrices formed by an ensemble of data satisfy a matrix facotrization
relation. The key step of the method is to modify the output matrix in such a way
that the range space of the observability matrix can be extracted. A robotic
manipulator with varying inertia links is used as an example. The "rst part of the
numerical simulation illustrates the applications of the pseudo-modal parameters.
The second part of the simulation tests the identi"cation algorithm under di!erent
conditions. Several practical issues are addressed.
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1. INTRODUCTION

Modal parameters including natural frequencies and modal damping ratios
describe the global properties of linear time-invariant (LTI) systems. These
parameters have been widely used to characterize LTI systems [1]. It has been
desired to extend modal concepts to linear time-varying (LTV) systems. However,
LTV systems violate one of the assumptions of the conventional modal analysis,
that is, stationarity. Some attempts in this direction have been made. Zadeh [2, 3]
de"ned the time-varying transfer function by extending the Laplace transform to
the varying impulsive response. However, in general, no closed-form of the Zadeh's
transfer function is known. Furthermore, the use of the Zadeh's transfer function in
a limited-time variation seems problematic since the de"nition assumes that the
variation continues in"nitely. The singularity or varying pole of the Zadeh's
22-460X/99/360149#19 $30.00/0 ( 1999 Academic Press
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transfer function was used to study the stability of time-varying systems [4]. Again,
"nding those varying poles is extremely di$cult or impossible in most times. On the
other hand, &varying eigenvalues' or &varying natural frequencies' have been used
without a rigorous de"nition [5}8]. The concept of the pseudo-modal parameters
was introduced in a previous study [9]. The pseudo-modal parameters are related
to the eigenvalues of the varying discrete-time state transition matrices by analogy
to LTI systems. The pseudo-modal parameters o!er a solution to describe dynamic
properties of LTV systems using a compact set of parameters. The applicability of
the pseudo-modal parameters deserves a further investigation.

Many attempts have been made to address identi"cation of LTV systems. Some
early e!orts simply extended standard time-invariant methods to a short data
segment from a LTV system under the assumption that the system dynamics does
not change signi"cantly in this period [10]. The use of adaptive methods
recognized that the model representing a LTV system should be time-dependent
as well. For example, if the system variation is slow, the coe$cients of an
autoregressive, moving average (ARMA) model can be assumed to be
time-dependent and the evolution of the coe$cients can be tracked by adaptive
algorithms [11, 12]. To further improve tracking ability, the parameters of the
ARMA model can be represented by time functions with a known structure, such as
a polynomial function. This way, the identi"cation problem is equivalent to
estimating the coe$cients of the polynomial functions [13]. A common feature of
the afore-mentioned methods is the use of data form a single experiment. Ensemble
methods are di!erent approaches that use a series of input and output data from
multiple experiments on the system undergoing the same variation. Because the
dynamic behaviors of the system at each moment are represented by an ensemble of
input and output data, many standard time-invariant methods can be readily
extended to LTV systems [14, 15]. The ensemble methods require no a priori
knowledge of the variation form of system parameters and are not limited by the
parameter variability. In a previous study [9], an algorithm to identify the
pseudo-modal parameters was developed. The algorithm is based on the ensemble
methods and subspace extraction schemes [16]. However, the algorithm is limited
to the use of free responses.

Two main objectives of this study are: to further explore the applicability of the
pseudo-modal parameters for LTV systems and to extend the algorithm proposed
in reference [9] to the case of using forced responses and forcing inputs. The paper
is organized as follows. Section 2 addresses characterization of LTV systems
using the pseudo-modal parameters. Section 3 develops an algorithm for the
identi"cation of the pseudo-modal parameters. Section 4 presents an illustrative
example to show the application of the pseudo-modal parameters and test the
proposed identi"cation algorithm.

2. CHARACTERIZATION OF DYNAMICS OF LTV SYSTEMS

An n-degree-of-freedom (d.o.f ) LTV system is represented by

M(t)xK (t)#D(t)x5 (t)#K (t)x (t)"bu (t) , (1)
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where M(t), D(t) and K (t)3Rn]n are mass, damping and sti!ness matrices that are
functions of time, respectively, x (t)3Rn is the displacement vector, b3Rn]ni is the
input shape matrix and u (t)3Rni is the input force vector, respectively. The
notation Ri denotes the i-dimensional real vector space and Ri]i denotes the i]i
real matrix space. The following assumptions are used in this study. The elements of
the mass, damping and sti!ness matrices are bounded and have a "nite number of
the "rst order discontinuous points within the interval of interest. The system is
asymptotically stable. The mass, damping and sti!ness matrices are non-singular
and symmetric within the interval of interest. The degree-of-freedom of the system
is constant or the system does not degenerate during the period of interest.
A state-space model for the system of equation (1) is given by

y5 (t)"A(t)y(t)#B(t)u(t), z(t)"Cy(t) , (2)

where

A (t)"C
!M~1 (t)D(t) !M~1(t)K(t)

I 0 D , B(t)"C
M~1(t)b

0 D, y (t)"C
x5 (t)

x(t)D.
In the above equations, the matrix A(t)3R2n]2n is called the system matrix,
y(t)3R2n is the state variable vector, the matrix C3Rno]2n is called the output
in#uence matrix, z(t)3Rno is the output or response vector and I3Rn]n is a unit
matrix. In the most general case, the matrix C may be time-dependent as well. In
this study, the matrix C is assumed to be a constant matrix, i.e., the measurement
system does not vary with time. It is assumed that the system de"ned by equation
(2) is observable. If the output data are measured at discrete times with a sampling
interval q and the input is a discrete signal characterized by a zero-order hold
between consecutive sample points, the corresponding discrete-time state-space
representation is of the form

y(k#1)"G(k)y(k)#H(k)u(k), z (k)"Cy(k) , (3)

where G(k)3R2n]2n and H (k)3R2n]ni are not constant and in general their closed
forms are unknown. The matrix G(k) is called the discrete-time state transition
matrix. The solution to equation (3) is given by

z (k)"CG(k, k
0
)y (k

0
)#C

k~1
+

j/k0

G(k, j#1)H( j)u( j) , k'k
0
*0, (4)

where G (k, k
0
) is the state transition matrix from the state at moment k

0
to the state

at moment k and is de"ned as

G(k, k
0
)"

i
g
j
g
k

G(k!1)G(k!2)2G(k
0
), k'k

0
,

I, k"k
0
,

undefined, k(k
0
.

(5)

It is noted that G(k#1, k)"G(k) .
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2.1. MODAL PARAMETERS OF LTI SYSTEMS

If the system is time-invariant, i.e., A and B are constant, the discrete-time state
transition matrix is a constant matrix given by

G(k)"G"exp(Aq) . (6)

In this case, the modal parameters of the system are related to the eigenvalues of G.
Conducting an eigendecomposition on G results in

G"VKV~1 , (7)

where V is the eigenvector matrix and K is the diagonal eigenvalue matrix, i.e.,

K"diag(j
1

j
2
, 2 , j

2n
) (8)

with the ith eigenvalue j
i
"exp(!d

i
q#ju

di
q), in which d

i
is the ith damping rate,

u
di

is the ith damped natural frequency, and j"J!1. As long as M, C and K are
real, symmetric, positive de"nite, and the system is underdamped, the 2n
eigenvalues occur in complex conjugate pairs, i.e., j

i
"j*

i`n
, i"1, 2,2 , n. The

similarity transformation is an important feature in a state-space model of LTI
systems. If T3R2n]2n is a non-singular matrix, then

G1 "TGT~1 (9)

is said to be similarly equivalent to G. It is easy to see that G and G1 have the same
eigenvalues.

2.2. PSEUDO-MODAL PARAMETERS OF LTV SYSTEMS

In a previous work [9], the concept of instantaneous pseudo-modal parameters
was introduced using eigenvalues of G(k) by analogy to LTI systems. The following
discussion further explores the use of the pseudo-modal parameters to characterize
the dynamic properties of LTV systems. As assumed previously, the system
concerned in this study is observable. Therefore, the state transition matrix G(k) is
non-singular at any moment k [17] and the eigensolution of G(k) exists, i.e.,

G (k)"V (k)K(k)V~1(k) , (10)

where V (k) and K (k) are the eigenvector matrix and eigenvalue matrix, respectively.
Because the elements of G(k) are real, the complex eigenvalues of G(k) occur in
complex conjugate pairs. If the ith eigenvalue j

i
(k) is complex, then the following

expression can be employed:

j
i
(k)"j*

i`n
(k)"exp[!d

i
(k)q#ju

di
(k)q], (11)

where!d
i
(k) and u

di
(k) are referred to as the ith pseudo-damping rate and

pseudo-damped natural frequency respectively. It is likely that some or all of the
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eigenvalues of G(k) may become real due to a variation in the system parameters. If
all the eigenvalues are distinct and the ith eigenvalue j

i
(k) is real, its corresponding

pseudo-damped natural frequency is zero or u
di
(k)"0 and its corresponding

pseudo-damping rate equals !d
i
(k)"ln[j

i
(k)]/q. Normally, real eigenvalues of

G(k) also occur in pairs. For example, if j
i
(k)"a#b is real, j

i`n
(k)"a!b. This

implies that if j
i
(k) increases, j

i`n
(k) decreases.

Two special types of LTV systems are abrupt and periodic. The parameters of an
abrupt change system vary from an old status Aold when t(k

0
q to a new status

Anew when k
0
q)t. In this case, the discrete-time state transition matrix is known,

G(k)"G
exp(Aoldq), 0)k(k

0
,

exp(Anewq), k
0
)k .

(12)

Therefore, the pseudo-modal parameters are equal to the modal parameters
de"ned by the conventional de"nition. An abrupt change in the system parameters
results in a sudden variation in the modal parameters.

The parameter matrices of a periodic change system with a period ¹ satisfy the
relation

A (t#¹)"A(t) and B (t#¹)"B(t) . (13)

If the period is discretized as ¹"Pq, according to Floquet theory [4], the
discrete-time state transition matrix G (k) has the form

G(k, k
0
)"R(k, k

0
) exp[F(k!k

0
)q], G(k)"G(k#1, k)"R(k) exp(Fq) , (14)

where R(k, k
0
)3R2n]2n is a periodic matrix, i.e., R(k#P)"R (k), exp(Fq)3R2n]2n

and F is a constant matrix. The pseudo-modal parameters are periodic because the
state transition matrix is periodic or G(k#P)"G(k).

2.3. STABILITY OF LTV SYSTEMS

As the conventional modal parameters, the pseudo-modal parameters can be
used to study the system stability. It has been proven that if a varying system is
asymptotically stable, the following condition holds [17]:

G(k, k
0
)P0 when kPR. (15)

This implies that for any non-zero initial condition, the free response of the
asymptotically stable system approaches zero when kPR. This condition is
satis"ed if all the eigenvalues of G(k), k'k

0
, lie within the unit circle in the

complex plane, i.e., Dj
i
(k) D(1 or !d

i
(k)(0 for i"1,2,2, 2n. Therefore, the

values of the pseudo-damping rates are an indicator of the instantaneous stability
of the system. If some of the eigenvalues of G(k) are outside of the unit circle
temporarily, the system may become temporarily unstable.

For a periodic system, the transition matrix over a period of the parameter
variation is a constant matrix and is denoted as G(k#P, k). Thus, the transition
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matrix over m periods is given by

G (k#mP, k)"G[k#mP, k#(m!1)P]G[k#(m!1)P, k#(m!2)P]2

]G(k#P, k)

"Gm(k#P, k) . (16)

The eigenvalues j
i
(k#P, k) of G(k#P, k), which are called the Floquet multipliers

[4], determine the stability of the periodic system. Let k"0 and R(0, 0)"I ,

G(P, 0)"R (P, 0) exp(FPq)"R (0, 0) exp(FPq)"exp(FPq). (17)

Therefore, the eigenvalues of G(P, 0) are directly related to the eigenvalues of F. If
any of the eigenvalues of F lie in the right-half complex plane, the periodic system is
unstable. Since G(k)"R(k) exp(Fq) , the eigenvalues of G (k) are a!ected by the
eigenvalues of F.

2.4. VARYING MODAL PARAMETERS

In some references [5}8], so-called varying modal parameters are evaluated
using the conventional de"nition by treating the matrix A(t) as a constant matrix at
the moment of consideration. The varying modal parameters can be considered as
an approximation of the pseudo-modal parameters as shown below. An
approximate form of a general discrete-time state transition matrix can be obtained
using the series expansions

G(k)"I#A(k)q#
1
2
[A2(k)#A0 (k)]q2

#

1
3!

[A3(k)#A(k)A0 (k)#2A0 (k)#AG (k)]q3#2. (18)

The above equation indicates that the changes in the pseudo-modal parameters
depend on the variability of the system matrix A(k). If the derivatives, A0 (k),
AG (k),2 , are small or the system is slowly varying, the discrete-time state transition
matrix G(k) can be approximated by

G(k)+I#A(k)q#
1
2

A2(k)q2#
1
3!

A3(k)q3#2"exp[A(k)q]. (19)

This relation can also be derived using the frozen technique [2,18].

2.5. THE SIMILARITY TRANSFORMATION

For time-varying systems, the similarity transformation is de"ned as

G1 (k)"T(k#1)G (k)T~1(k), H1 (k)"T(k)H (k), C1 (k)"CT~1 (k) , (20)
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where T(k)3R2n]2n and T(k#1)3R2n]2n are non-singular. The matrices G1 (k),
H1 (k), and C1 (k) are another realization of the system. For LTV systems, the
similarity transformation preserves the boundedness and stability of the system.
However, in general, G(k) and G3 (k) no longer share the same eigenvalues if T(k) is
not equal to T(k#1). In the following section, the discussion is focused on
developing an algorithm to identify the matrix de"ned as

G3 (k)"T(k)G(k)T~1(k) . (21)

The eigenvalues of G3 (k) remain same as those of G (k) as long as ¹(k) is
non-singular.

3. IDENTIFICATION OF THE PSEUDO-MODAL PARAMETERS

This section extends the algorithm developed in reference [9] to the case of using
an ensemble of forced responses and inputs. To obtain an ensemble of input}output
sequences, N experiments are conducted on the system. In each experiment, the
system undergoes the same time-varying change and is excited by a di!erent input.
The measurements from the jth experiment are represented by z

j
(k) and u

j
(k),

j3[1, N]. Using these N sets of the input and output data from the time instant k to
k#M!1, a general output Hankel matrix Z (k)3RnoM]N is formed as

Z(k)"

z
1
(k) z

2
(k) 2 z

N
(k)

z
1
(k#1) z

2
(k#1) 2 z

N
(k#1)

F F } F

z
1
(k#M!1) z

2
(k#M!1) 2 z

N
(k#M!1)

(22)

and a general input Hankel matrix U(k)3RniM]N is formed in the way similar to
Z(k) using u

j
(k), j3[1, N]. In the absence of noise, Z (k) and U (k) are related by an

input}output matrix equation:

Z (k)"C(k)Y(k)##(k)U (k) , (23)

where the state matrix Y(k)3R2n]N is given by

Y (k)"[y
1
(k) y

2
(k) y

3
(k) 2 y

N
(k)]. (24)

The observability matrix C(k)3RnoM]2n is given by

C(k)"

C

CG(k#1, k)

CG(k#2, k)

F

CG(k#M!1, k)

, (25)
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the impulse response matrix #(k)3RnoM]ni is given by

#(k)"[#
1
(k)#

2
(k),2 , #

M
(k)], (26)

and its ith block matrix in the jth column is of the form

#
ij
(k)"

i
g
j
g
k

0, i)j ,

CH(k#j!1), i"j#1,

CG(k#j#i!3, k#j)H(k#j!1) , i'j#1.

(27)

An important step of the algorithm proposed in reference [9] is to extract the
range space of the observability matrix C (k). Let Range (S) denote the range space
of a matrix S. If a matrix C1 (k) has the same range space as Range(C(k)), such
a matrix C1 (k) can be written as C1 (k)"C(k)T~1(k) for some non-singular matrix
T(k)3R2n]2n . In order to extract the observability range space, the part of the
output Z(k) that does not emanate from the state Y(k) needs to be eliminated. In
other words, the second term on the right-hand side of equation (23) has to be
annihilated. To do this, a matrix Uo (k)3RN]N is needed such that Uo(k) is normal
to U(k) or U(k)Uo(k)"0. A simple formulation of Uo (k) is given by

Uo(k)"I!UT(k)[U(k)UT(k)]~1U (k) , (28)

where I3RN]N is a unit matrix. The indicated inverse exists if the matrix U(k) has
a full row rank, i.e., rank(U (k))"n

i
M)N . Postmultiplying equation (23) by Uo(k)

results in

Z(k)Uo (k)"C(k)Y(k)Uo (k) . (29)

Now the range space of the observability matrix can be obtained from Z(k)Uo (k),
i.e.,

C1 (k)"Range(Z (k)Uo(k))"Range(C (k))

"

C1 (k)

C1 (k#1)G1 (k)

C1 (k#2)G1 (k#1)G1 (k)

F

C1 (k#M!1)G1 (k#M!1, k)

. (30)

To extract C1 (k#1), Z (k#1) and U(k#1) are formed using the data from the
moment k#1 to the moment k#M and they satisfy the relation

Z (k#1)"C(k#1)Y (k#1)#H(k#1)U(k#1). (31)



MODAL ANALYSIS 157
Then one has

C1 (k#1)"Range(Z(k#1)Uo (k#1))"Range(C(k#1))

"

C1 (k#1)

C1 (k#2)G1 (k#1)

C1 (k#3)G1 (k#2)G1 (k#1)

F

C1 (k#M)G1 (k#M, k#1)

. (32)

Two matrices C1
1
(k#1) and C1

2
(k) are formed using the "rst M!1 block rows of

C1 (k#1) and the last M!1 block rows of C1 (k) respectively:

C1
1
(k#1)"

C1 (k#1)

C1 (k#2)G1 (k#1)

C1 (k#3)G1 (k#2)G1 (k#1)

F

C1 (k#M!1)G1 (k#M!1, k#1)

(33)

and

C1
2
(k)"

C1 (k#1)G1 (k)

C1 (k#2)G1 (k#1)G1 (k)

C1 (k#3)G1 (k#2)G1 (k#1)G1 (k)

F

C1 (k#M!1)G1 (k#M!1, k)

. (34)

Now an estimate for G1 (k) can be found by

G1 (k)"[C1
1
(k#1)]`C1

2
(k) , (35)

where (S)` denotes the Moore}Penrose inverse of a matrix S.
To extract the range space C1 (k) or C1 (k#1), the singular-value decomposition

(SVD) [19] can be employed:

Z(k)Uo (k)"U(k)R(k)WT(k),

Z (k#1)Uo (k#1)"U(k#1)R(k#1)WT(k#1) . (36)

According to the property of the SVD, the "rst 2n columns of U(k) give a set of the
base vectors for the range space of C(k), i.e.,

C1 (k)"U
s
(k)"[U

1
(k), U

2
(k),2 , U

2n
(k)] (37)
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and the same holds for the "rst 2n columns of U(k#1), i.e.,

C1 (k#1)"U
s
(k#1)"[U

1
(k#1), U

2
(k#1),2 , U

2n
(k#1)]. (38)

Now invoking equations (33)}(35) results in G3 (k) .
In order to "nd G3 (k), the matrix T(k)T~1(k#1) is needed. However, the exact

form of T(k)T~1(k#1) is unknown. In a special case when n
o
*2n and the rank of

C is equal to 2n, the matrix T(k)T~1(k#1) can be obtained by

T(k)T~1(k#1)"F`(k)F(k#1), (39)

where F(k) and F(k#1) are formed by the "rst n
o

rows of U
s
(k) and U

s
(k#1)

respectively. If n
o
(2n, an approximate form of T(k)T~1(k#1) can be obtained

using the method suggested in reference [9]. Finally, the matrix G3 (k) is given by

G3 (k)"F`(k)F(k#1)M[C1
1
(k#1)]`C1

2
(k)N . (40)

The algorithm described above is summarized as follows: To "nd G3 (k
0
#i),

i"0, 1, 2,2 , l , (1) construct the general Hankel matrices, Z(k
0
#i) and; (k

0
#i) .

Find the matrix Uo(k
0
#i) using equation (28). (2) Conduct the SVD on

Z(k
0
#i)Uo (k

0
#i) to obtain U

s
(k

0
#i) . (3) Construct the general Hankel matrices

Z(k
0
#i#1) and U (k

0
#i#1). Find the matrix Uo (k

0
#i#1) using equation

(28). (4) Conduct the SVD on Z(k
0
#i#1)Uo(k

0
#i#1) to obtain U

s
(k

0
#i#1).

(5) Use U
s
(k

0
#i) and U

s
(k

0
#i#1) to form C1

2
(k

0
#i), C1

1
(k

0
#i#1), F(k

0
#i),

and F(k
0
#i#1), (6) Solve equation (40) to obtain G3 (k

0
#i). If i(l, increase i by

1 and go to Step 3.

4. AN ILLUSTRATIVE EXAMPLE

The purpose of the example given in this section is two-fold. First, it serves to
illustrate how the pseudo-modal parameters can be used to characterize the
dynamics of LTV systems. Second, it tests the proposed algorithm under di!erent
conditions. A planar robotic manipulator with varying inertia links is used as
a LTV system and shown in Figure 1. The manipulator is placed in a horizontal
plan and each link has a sliding mass k

i
whose position r

i
(t) can be varied. Such

a manipulator was discussed in reference [20] and the idea of the use of
time-varying inertia links is to compensate external perturbation by varying the
position of the sliding masses. To model the system, the following assumptions are
used. The links are uniform rigid bars of equal length l and mass m. The "rst link is
connected to the base by means of an elastic spring-hinge of rotational sti!ness k

1
.

The second link is connected to the "rst link by a similar spring of sti!ness k
2
. The

viscous damping is modelled by the rotary dampers d
1

and d
2
. The angles u

1
and

u
2

denote the angular positions of the links relative to the x-axis. When disturbed,
the links vibrate about their equilibrium positions u

10
and u

20
. The actual angular

positions of the links become u
1
"u

10
#u

11
and u

2
"u

20
#u

21
. With the

assumption of small angular vibrations, a linearized model for the system is de"ned
by a matrix equation

M(t)uK#D(t)uR #Ku"q (t) , (41)



Figure 1. A robotic manipulator with varying inertia links.
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where u"[u
11

u
21

]T , and where

M(t)"C
a
1
#k

2
l2#k

1
r2
1

(a
2
#k

2
lr
2
) cos(*u

0
)

(a
2
#k

2
lr
2
) cos(*u

0
) a

3
#k

2
r2
2

D ,

D(t)"C
d
1
#d

2
#2k

1
r
1
rR
1

!d
2
#k

2
lrR
2
cos(*u

0
)

!d
2
#k

2
lrR
2
cos(*u

0
) d

2
#2k

2
r
2
rR
2

D ,

K"C
k
1
#k

2
!k

2
!k

2
k
2
D , q(t)"C

q
1
(t)!q

2
(t)

q
2
(t) D ,

a
1
"4ml2/3, a

2
"ml2/2, a

3
"ml2/3, Du

0
"u

10
!u

20
.

The state vector is de"ned as y"[u5 T, uT]T.
In the simulation, the following numerical quantities were used: the length

l"1 m, the mass m"2 kg, the sliding masses k
1
"k

2
"0)5 kg, the sti!ness k

1
"

100 Nm/rad, k
2
"80 Nm/rad, and the damping coe$cients d

1
"0)5 Nm/rad/s,

d
2
"0)4 Nm/rad/s. Because a closed-form of the time-varying transition matrix of

the system under study is unknown, the true transition matrices were found using
a numerical way given in reference [9]. After the transition matrix at each instant
was found, an eigendecomposition was conducted on the true transition matrix to
obtain the varying eigenvalues and the pseudo-modal parameters de"ned by
equation (11).
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4.1. THE PSEUDO-MODAL PARAMETERS AND VARYING PATTERNS OF SLIDING MASSES

In the use of the sliding masses as a means of vibration control, it is desirable to
have a good understanding of the dynamic behaviors of the robot under di!erent
varying patterns of the sliding masses. A straightforward way would be to study
changes in individual elements of the mass and damping matrices for various
varying patterns. However, such information is indirectly related to the dynamics of
the robot. On the other hand, the discrete-timestate transition matrices and the
pseudo-modal parameters provide some global characteristics of the robot. To
illustrate this idea, the following simulation scenario is used. Initially, the sliding
masses remain at rold

1
and rold

2
in the period of 0)t)1 s. Then, during the period of

1)t)4 s, the sliding masses change their positions in a given pattern. Finally, the
positions of the sliding masses become rnew

1
and rnew

2
. The con"guration of the

manipulator is Du
0
"453. Four cases of changes in the initial and "nal positions

are considered:

Case 1: rold
1

"rold
2

"0)1, rnew
1

"rnew
2

"0)9;

Case 2: rold
1

"0)9, rold
2

"0)1, rnew
1

"0)1, rnew
2

"0)9;

Case 3: rold
1

"rold
2

"0)9, rnew
1

"rnew
2

"0)1;

Case 4: rold
1

"0)1, rold
2

"0)9, rnew
1

"0)9, rnew
2

"0)1.

First let the movement of the sliding masses have a trapezoidal velocity pro"le, i.e.,

rR
i
(t)"

i
g
j
g
k

rR
ic
(t!1), 1)t)2,

rR
ic
, 2(t)3,

rR
ic
(4!t), 3(t)4,

(42)

where i"1, 2 and rR
ic
"(rnew

i
!rodd

i
)/2 is the maximum constant velocity. In the

following simulation, a sampling interval q"0)04 s was used. The pseudo-damped
natural frequencies u

d1
(k) and u

d2
(k) for all four cases are given in Figures 2(a) and

(b), respectively. The pseudo damping rates !d
1
(k) and !d

2
(k) for all four cases

are given in Figures 3(a) and (b), respectively. Several observations can be drawn
from the "gures. In general, the variation of the pseudo-modal parameters consists
of three phases, that is, the old constant values, the varying values and the new
constant values. The changes from the constant values to the varying values are
continuous. The continuity of the values is determined by the nature of the
parameters in the mass and damping matrices and the trapezoidal velocity pro"le.
With such a variation pattern, at moments t"1 and 4 s, the changes in the
positions and velocities of the sliding masses are continuous and the changes in the
acceleration are abrupt. Because the mass and damping matrices are functions of
r
i
and rR

i
, the transition in the pseudo-modal parameters is continuous. It is noted

that, in Cases 3 and 4, !d
1
(k) becomes positive in a portion of the varying period.

Such a behavior is explained by the changes in the damping matrix D(t). Because of
changes in rR

1
(t) and rR

2
(t), the e!ective system damping is reduced.



Figure 2. Pseudo-damped natural frequencies for a variation of the trapezoidal velocity pro"le:
**, case 1; . . . . . ., case 2; } ) } ) } ) }, case 3; } } } }, case 4. (a) u

d1
(k); (b) u

d2
(k).

Figure 3. Pseudo-damping rates for a variation of the trapezoidal velocity pro"le: **, case 1;
. . . . . ., case 2; } ) } ) } ) }, case 3; } } } }, case 4. (a) !d

d1
(k); (b) !d

d2
(k).
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Now let the sliding masses move with a sinusoidal position pro"le, i.e.,

r
i
(t)"rold

i
#(rnew

i
!rold

i
) sin[n(t!1)/6], 1)t)4 s. (43)

The pseudo-damped natural frequencies for all four cases are shown in Figures 4(a)
and (b), while the pseudo-damping rates for all four cases are given in Figures 5 (a)
and (b). It is noted that the changes in the values are not continuous at the
beginning of the variation. This is caused by a sudden change in rR

i
(t), which results

is an abrupt variation in the e!ective damping matrix. It is also seen that, in Cases
3 and 4, !d

1
(k) has a larger increase than the value with the trapezoidal velocity

pro"le.

4.2. IDENTIFICATION OF THE PSEUDO-MODAL PARAMETERS

The forced responses are obtained by applying a torque at joint one. The torque
applied at joint two is zero. It is assumed that the state variables are directly
available, i.e., C"I or z

j
(k)"y

j
(k)"[uR

11j
(k) uR

12j
(k) u

11j
(k) u

12
(k)]T. The

dimensions of the state-space model are 2n"4, n
i
"1 and n

o
"4.

The statistical quantities that were used in the simulation are de"ned in the same
manner as those in reference [15]. For a discrete stochastic process, for example, v

j
,



Figure 4. Pseudo-damped natural frequencies for a variation of the sinusoidal position pro"le:
**, case 1; . . . . . ., case 2; } ) } ) } ) }, case 3; } } } }, case 4. (a) u

d1
(k); (b) u

d2
(k).

Figure 5. Pseudo damping rates for a variation of the sinusoidal position pro"le:**, case 1; . . . . . .,
case 2; } ) } ) } ) }, case 3; } } } }, case 4. (a) !d

d1
(k); (b) !d

d2
(k).

162 K LIU
v
j
(k) presents the observation in the jth experiment at moment k. An ensemble of

v
j
(k) is a family of values v

j
(k) for j3[1, N]. For a speci"c moment k, v

j
(k) is

a random variable, the mean and standard deviation of v
j
(k) are de"ned as

vN (k)"
1
N

N
+
j/1

v
j
(k), p

v
(k)"S

1
N

N
+
j/1

[v
j
(k)!vN (k)]2 . (44)

It is assumed that the responses are contaminated by measurement noise. The
signal-to-noise ratio (SNR) is de"ned as

SNR"p
zi
(k)/p

wi
(k) , i"1, 2, 3, 4, (45)

where p
zi
(k) is the standard deviation of the ith response at moment k and p

wi
(k) is

the standard deviation of the noise added to the ith output at moment k. In the
simulation, the output sequences z

j
(k), j3[1, N], were numerically found using the

Runge}Kutta integrator. Then p
zi
(k) was found using the ith output z

ij
(k),

j3[1, N], in equation (44). With a given SNR, p
wi

(k) was determined by equation
(45). Finally, a Gaussian white noise series with a unit standard deviation
was multiplied by the value p

wi
(k) to generate a series w

i
(k)"[w

i1
(k),

w
12

(k),2 , w
iN

(k)]. The noisy output zL
ij
(k) was obtained as zL

ij
(k)"z

ij
(k)#w

ij
(k).
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It is important to select M or N properly. The block row number M should be
chosen such that n

o
M'2n. A larger M implies that the extracted subspace is valid

over a longer time interval. In this sense, a larger M is better. On the other hand,
M determines the row number n

i
M of U(k) which should be less than the column

number N, i.e., n
i
M(N to ensure the existence of [U(k)UT (k)]~1 in equation (28).

Therefore, an increase of M will cause an increase of N and result in a drastic
increase of testing and computational cost. In the following simulation, N"20 and
M"5 were used if it is not stated otherwise.

It is very critical to ensure that the input is persistently exciting. The success of
the algorithm depends very much on the quality of the inversion of U(k)UT (k) . The
input sequences are persistently exciting at the time-instant k if the rank of U(k)
equals n

i
M. To ensure this condition, there must be at least n

i
M sets of independent

inputs among N sets of input sequences. A white noise input is a persistent
excitation. Therefore, as long as N sets of white noise series are generated
independently, the rank of U(k) equals n

i
M.

Figures 6(a) and (b) show a comparison of the true values and the estimated
values for u

d1
(k) and !d

1
(k) respectively. The sliding masses were engaged in the

movement of Case B with the trapezoidal velocity pro"le. The sliding masses start
moving at t"3 s to give a su$cient time to excite the system. The signal-to-noise
ratio was 50. The "gures give the values of a single estimate and mean values of 10
estimates. Figures 7(a) and (b) show the results when SNR"100 was used. For
each experiment, a white noise with a unit variance was generated as the input q

1
(k)

and the initial states of the system were zero. The "gures show that the estimated
pseudo-parameters follow the variation of the true values. When the noise level is
lower or SNR is larger, the accuracy of estimation improves. The estimated
pseudo-damping rates are more sensitive to the noise disturbance than the
estimated pseudo-damped natural frequencies. The results of a single estimate are
not satisfactory and more estimates will improve the results.

To measure the quality of estimates, the standard deviation of estimated values is
used. For example, the standard deviation of u

d1
(k) is de"ned as

pud1(k)
"S

1
¸

L
+
i/1

[u
d1l

(k)!uN
d1

(k)]2 , (46)
Figure 6. Comparison of the true and estimated values of the "rst pseudo-damped natural
frequency and pseudo-damping rate when SNR"50: **, true values; . . . . . ., values of a single
estimate; } } } }, mean values of 10 estimates. (a) u

d1
(k); (b)!d

d1
(k).



Figure 7. Comparison of the true and estimated values of the "rst pseudo-damped natural
frequency and pseudo-damping rate when SNR"100: **, true values; . . . . . ., values of a single
estimate; } } } }, mean values of 10 estimates. (a) u

d1
(k); (b)!d

d1
(k).

Figure 8. Standard deviation values pud1(k)
of the estimated pseudo-damped natural frequencies:

**, M"5; . . . . . ., M"10; } )} ) } ) }, M"15.

Figure 9. Mean values of standard deviation values of the estimated pseudo-damped natural
frequencies when M varies: **, mean values of pud1 (k)

; . . . . ., mean values of pud2 (k)
.
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where u
d1l

(k) denotes the lth estimate and u6
d1

(k) the mean of the ¸ estimates. The
in#uence of di!erent choices of M is shown in Figures 8 and 9. Figure 8 displays
pud1(k)

versus time for three di!erent M1s. Figure 9 gives the mean values of u
d1l

(k)
and u

d2l
(k) when M varies from 3 to 16. In the simulations, SNR"100 was used. It

is noted that, when M is close to N, the estimation accuracy deteriorates drastically.
When M is small, the standard deviations of p

d1
become smaller which indicates
u (k)



Figure 10. Mean values of standard deviation values of the estimated pseudo-damped natural
frequencies when N varies: **, mean values of pud1 (k)

; . . . . ., mean values of pud2 (k)
.

Figure 11. Mean values of standard deviation values of the estimated pseudo-damped natural
frequencies when the number of sinusoidal terms varies:**, mean values of pud1 (k)

when the input is
a series of sinusoidal terms; . . . . . ., mean values of pud2 (k)

when the input is a series of sinusoidal terms;
} )} ) } ) }, mean values of pud1 (k)

when the input is white noise; } ) } ) } ) }, mean values of pud2 (k)
when the

input is white noise.
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a better estimate. After M is below a certain value, a further reduction of M does
not alter the standard deviations of pud1(k)

signi"cantly. The e!ect of di!erent N1s is
illustrated by Figure 10. It shows the mean values of pud1(k)

and pud2(k)
when M"5

and SNR"100 were used. As expected, an increase of the experiment
number}improves the estimation accuracy. The mean values of pud1(k)

and
pud2(k)

increase signi"cantly after N"12. This indicates that there is a threshold
value after which the estimate accuracy deteriorates drastically.

The case of using sinusoidal inputs was also tested. A torque was generated using

q
1
(t)"0)1

Ns

+
i/1

sin(u
i
t) , (47)

where u
i
is uniformly distributed in a range of 2)u

i
)25 rad/s and N

s
is the total

number of sinusoidal terms. One of questions is: how does the number of sinusoidal
terms a!ect the estimation accuracy? Figure 11 shows the mean values of pud1(k)

and
pud2(k)

versus N
s
. The "gure also gives the mean values of p

d1
(k) and p

d2
(k) when the

white noise series were used as inputs. It is noted that, when the number of
sinusoidal terms is small the quality of the estimates is poor. However, after N

s
is
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greater than a certain value, the quality of the estimates remains similar. In general,
the white noise excitation results in a better estimate. The algorithm was tested
against other conditions, such as, di!erent available responses, noisy inputs and
di!erent moving patterns of the sliding masses. Due to limit of the paper length,
they are not reported here.

5. CONCLUSIONS

This study has achieved two tasks: (1) to extend the well-de"ned modal concepts
to characterize the dynamics of LTV system and (2) to further develop the
previously proposed algorithm to identify LTV systems using the forced responses.
For the "rst task, a discrete-time state-space model has been used to represent LTV
systems. The eigenvalues of the discrete-time state transition matrix are related to
the pseudo-modal parameters in analogy to LTI systems. The paper has explored
how the pseudo-modal parameters can be used to describe the global properties of
LTV systems. It is shown that the pseudo-modal parameters preserve certain
characteristics of the conventional modal parameters de"ned for LTI systems.

For the second task, the paper has shown that the input and output Hankel
matrices formed by an ensemble of data satisfy a matrix factorization equation. The
key to the proposed method would be to modify the input matrix such that the part
of the responses that does not emanate from the state is eliminated. With the
modi"ed output matrices, the previously developed algorithm can be readily
implemented. A robotic manipulator with varying inertia links has been used as an
example. The "rst part of the simulation has illustrated how the pseudo-modal
parameters can help understand the dynamics due to di!erent moving patterns of
sliding masses. The second part of the simulation has tested the proposed
identi"cation algorithm. The results have indicated that the algorithm is capable of
tracking the system variation and has a satisfactory robustness when the
measurement noise is low or moderate. The simulation has also addressed several
important issues such as selection of the parameters of the estimate model and
exciting functions.
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